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. NATIONAL ADVISORY. COMMITTEE FOR AERONAUTICS

" HIGH-ALTITUDE COOLING
IIT - RADIATORS
By Jack N. Nielaen

SUMMARY

A detailed analysis has been made ta take account of the
high cooling-air veloclity occurring in high-altitude radiators.
Methods are developed for determining the heat-tranafer rate,
the pressure drop, and the drag power. Some effects of Mach
" number are shown.  Radlator performance charts, based-on the anal-

yeis are presented for a wide range of the design variables. The
application of the charts is shown by an:example. . SIS

The performance.charts show that: the heat-trensfer rate for
e given total-pressure loss is not greatly affected by the high
airplane velocities but that the neceesary total-pressure loss
and the resulting drag are both greatly increaeed at high alti-
tudes, ST . Cpegrina e

INTRODUCTION

Extensive literature ies available relative .to the perform-
ance of ethylene-glycol radiators in -the normal range .of oper-
ating conditions. At high altitudes, however, certain effects
that normally receive but little comsideration acquire increased
importance as a result of the high velocities of the cooling air
through the tubes. The purpose of this paper 1s to describe and
evaluate these effecta.

The theories are outlined on which are based the calcula-
tions of heat transfer, of friction pressure drop, and of accel-
eration pressure drop at high Mach numbers. A general differential
equation for the pressure drop and some approximate solutions
for the equation are given. Radiator design charts based on the
simplest of these approximate solutions are included. These charts
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show, for a range of altitude up to 50,000 feet the variation
of heat dissipation per unit frontal ares with pressure drop as
well ag the corresponding drag power. An exemple showing the
use of the charts is aleo included.

This paper is the third of the geries on high-altitude cool-
ing. (See reference 1.)

SYMBOLS

v alrspeed, feet per second

¥  mean flow velocity in radiator tube, feet per second
L radiator-tpube length, feet

D  radiator-tube diameter, fe@ﬁ»_

A cross~sectional a¥ea of radlator tpbe, square feet
X distance along radiater tube, feeﬁ

y distance from axis of radiator tube, feet

T  absolute temperature, °F + 460

Tw absolute temperature of inner surface of radiator tube,
0
F + 460
T, absolute stagnation temperature,
2
[») .
F + 460, T + e
T "
P
6 =T, - T,

P density of cooling alr, slugé per cubic foot
gas constant for air (53.3 X 32.2 Btu per siug per OF)

p  absolute static pressure, pounds per square £oot

q dynamic preséure, pounds per squ&re'fobt .
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e, impast pressuPe, poundd pér square foot - -

H total pressure, pounds per square foot

ApF gtatic-pregsure change'due'tO“shearing force at. tube wall,
pounds per square foot

APm static-pressure change due to momentum change of cooling
air, pounds per square foot

y isentropic-expansion exponent (1.,4)"

k thermal conductividy, Btu per square foot per second per
(°F /foot) - - v o

Cp gpecific heat of air at conStant pressure - (7,73 Btu per slug

J mechanical equivalent of heat (778 foot-pounds per Btu)

h heatwtgansfer coefficlient, Btu per second per square foot
per F ’

Q heat-transfer rate, Btu per second

Pc heat-transfer rate, horsepower per unit frontal area of
radiator

PD drag power, hofsepdwer per unit frqptal area of radiator

o relative density of atmosphere (p/0.002378)

) absolute viscosity of cooling alr, slugs per foot per
gecond

R Reynolds number of flow in radiator tube (Vzpzb/u)

a speed of sound at temperature T, feet per second
(ﬂ/&RGj‘>

Subsgcriptse:

0 in free stream

2 Just insilde radiator-tube entrance



4 NACA ARR Wo. IATLLb

3 Just inside pradiatop-tube exit

4 Just outside radiator-tube exit after sudden expansion

5 in cooling alr after air returns to free stream Static
‘pressure ' SR

8 stagnation

ANALYSIS OF THE COOLIWG-AIR FLOW-

The path of the cooling air through the alrplane ig con~- :
veniently considered in four parts. Between the free sgtrcam and
the inlet to the radiator tubes the air undergoes a change, usu-
ally an increase, in static pressure and some loss of total pres-
spure. In flowing through the hot tube the air undergoes a tem-
perature rise and a totsl-pressure drop. In passing out of the
rediator tubes the air suffers a further logs of total pressure.
Finally, as the air passes out of the duct into the fres stream,
the gtatic pressure returns to free-stream static pressure at sub-
stentially constant total pressure. A detalled analySJs of the
processes occurring in these steps follows.’

Adisbatic Compression .
The temperature at the radiator-tube entrance is gi#en by

a statement of +the law of the conservation of energy [for the
adiabatic flow of a perfect gas ‘ : ‘

TR Ny SR A N | 1
To =T * 55 .(Yo Vz) | (1)
po

1 4 iy vor OF per Foob-nound
where §3- = O 832 x 10 -glug pex.. F per foot-pound
‘i CD . _ . :

Py

The pressure just lnside the radiator-tube ahtranée,:unlike
the temperature, is not uniquely determined by the-airplane speed
and the tube-entrance velocity. If the flow from the fyee stream
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up to this point were isentropic, the pressure p, would be given

by
. y-1 - .
A 21 2
To 7‘7“1‘-1 Yo} 1 T2 1 (2)
Do =T “\w/ 1=

The full isentropic pressure rise is generally not developed
because of gkin friction and flow separation. An estimate of
the pressure loss must be made for purpoges of calculation,

Heat Transfer

The usual equation for the heat transfer from a radiator
tube is derived by equating the heat lost from an elementary
length of tube wall to the heat gained by the fluid in flowing
through the element. The heat lost is

dQ = h(’l‘w . T)im dx (3)

where T 1is the temperature at any distance x  along the
radiator tube. The expression for the heat:transfer coeffi-
cient from reference 2, with the value of the congtant from
reference 3, is - ) ' '

' o 0.2 _0.8
" h= 0.0247cp(%) (pV) " (4)

The heat gained is given by

dq = ’%pﬁfop ar (5)

If any change in the kinetic energy within the element is neg-
lected, an equation relating T and x wmay be obtained by
eliminating h and dQ among equations ' (3), (4), and (5).

If the variation in the fifth root of the viscosity is neglected,
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the equation may be integrated for the initial conditions T = T2
when x = 0Q; thus

o 0.2
‘ -4(0.0247)R %
T, - T = (T, - Tgle ‘ (8)

The quantity of heat transferred por uniﬁ‘ﬁiﬁe_up,té point X’ 18

DZ
Q= T op(T - Tp) (7)

Combining equations (6) and (7) results.in the usual equation
for the hesat transfer of radiators .. _ :

-0.2%

2 .

Q= of 7o (Ty - Tg) |1 - o

Yo

The empirical formula for the heat-trangfer coefficient given
by equation (4) is based on tests at low airspesds for which
the heat developed in the laminar sublayer by viscous shearing forces
js small when compared with the total heat transfer. Because the
heat generated by viscous shearing forces is quadratically depend~
ent on the cooling-alr velocity, this heat becomss appreciable at
high airspe=is. For such cases Crocco gives the following rule
in reference 4: "The transference of heat between any object and
a fluid filowing by it, when it is no longer possible to disre-
gard the heat developed by friction, is governed by the same law
that applied when it is negligible, provided the temperature to
which the fluid ie brought by adiabatic arrest 1s congldered as
ite tewperature," In equation (3), that is, the actual tempera-

ture should be replaced by the stagnation temperature

aQ = h(T, - Tg)xD dx (9)

The plausibility of equation (9), at least for the limiting.
case of zero heat transfer, may be shown as follows: Consider
the flow in the boundary layer to be essentilally two-dimensional,
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inasmuch as the radius of curvature of the tube is large com-
pared with the thickness of the boundary layer. Velocity and
temperature gradients in the flow direction may be neglected.
The change in the total energy of the fluid flowing through an
elementary volume is the net heat conducted into the volume

by the temperature gradient perpendicular to the flow direction
plus the work done on the volume by the viscous shearing forces
resulting from the velocity gradient perpendicular to the flow
direction. In the form of an equation, the energy balance
becomes

v oAts) 2 R A (10)

ax oy oy T Oy

P

Y

Ir CD, k, and 4 are assumed to be independent of the tempera-

ture, equation (10) may be rewritten as

oT dE i Ve
oVe, —2 = — \KT + - — (11)
P ox 3y J 2,

For the case ucp/k = 1, a particular solution of equa-
tion (11) is “

T + E?E;': T, = Constant-; (12)

The net heat conducted into the elementary volume is, for this
golution, equal to the work done by the volume against viscous
shearing forces, so that the total-energy distribution is

uniform throughout the boundary layer. %t is apparent that
at the wall, where V = O and T = Ts,_ §§~= 0; that is, the wall

is at temperature T_ and the heat transfer is zero.

o o
The validity of the assumption &ER = 1 depends upon whether

the boundary layer is laminar or turbulent. There will usu-
ally be an outer turbulent boundary layer adjoining a laminar
sublayer, part of the temperature rise occurring within each.

c
For the laminar sublayer EEE = 0.75. For the turbulent part of

/
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ne
the boundary layer, however —L2 = 1 because the effective values
) H K

of k and p are greater for turbulent flow than for laminar ue
flow (reference 4), The over-all effects of the variation of _“EE'

with the nature of the flow and of the variation of u, cp, and

k with temperature on the equilibrium temperature of the pipe wall
as given:by equation (11) are not very great. Frdssel in refer-
ence 5 observed that alr accelerating from rest at atmospheric
temperature to supersonic velocities did not appreclably change' -
the tube-wall temperature from atmospheric temperature, even
though the temperature of the air dropped more than 100° F.

In the development of the heat-transfer equation for high air-
speeds, the kinetic-energy correction must be added to equa-
tion (5) before this equation may be used in the high-velocity
range; thusg "

- 72
dQ:TpV CP dT-{-dé:j:

or
aq = - (T arg (13)

If the heat-transfer coefficient is assumed to be the same at
high speeds as at low speeds, the solution of equations (13)
and (9) is analogous to equation (8):

-

XD/ -£(0.0247)R "+ °X
Q = oV 1—‘—;;-— Op(’l’w - TBZ) 1 ~e '-" "D (14-')

Equation (14) is recommended as a first approximation to the
heat-transfer rate at high airspeeds for which experimental data
are lacking. The assumption in the derivation that the heat-
transfer coefficient remaing the same at high speeds as at low
ppeeds is implied in the rule given by Crocco in reference 4. It
is an experimental fact (reference 5) that the skin-friction
coefficient is independent of the Mach number; and, because the
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mechanisgm causing heat transfer is essentially the same as the
mechanlsm causing skin friction, it seems Justifiable to assume
in the absence of direct experimental data that the heat-
transfer coefficlent is also independent of the Mach number.

Static-Pressure Losses 1n the Tubes

Linear axlial-veloclty distributions. - The primary cause
of static-pressure drop in the flow through a hot radiator tube
is the shearing force at the tube wall dus to the skin fric-

.tion. According to reference 3, the static-pressure drop due
to skin friction is

- ""2 'Oozx
APF = 0.0QBpV R ﬁ

or, in the differential form with due regard for sign,

z R"Onz

-dp, = 0.098pV" dx (18)

Because the product pV must be a constant within the
tube, the density reduction within the tube results in an
acceleration that causes the further pressure drop

.

a b/e »sz
poy = f ,9_2,_/., (2ry) dy | ox
) D /4

When the variable y 1s changed to ﬁ%%,' the expression

rewritten in the differential form ia

X |
-
wdpy = % pri/‘ z(%) 575 ¢ (55-/‘3-2) ax (16)
0
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For the Blasiua-%—power-law velocity distribution the value of °

the integral is 50/49. A value of 1 will be assumed; that is, .
the average velocity is supposed equal to the root-mean-square
veloecity. In the rest o the paper the bar has been omitted
from V and no distincti n is indicated between velocity,
average velocity, and rootnmean~square velocity.

The equation for the total loss of static pressure is glven
by the sum of equations (15) and (36) as fOllOWS'

| 0.2
-dp = O. 098pV2 R ax 4 d(pV‘) ' o {7
D

As oV 1s constant,

R_o 2 L
'0? - Pz = 0.098pV -5 V dx + oV av (18)

PN oy
O 2

The static-pressure drop in the tube may be approxnmdted if the
axial-veloclty distribution is assimed to be linear, an assump-
tion that will be justified in the following section. By this
assumption

P2 7 D5 = 090 O(z&; Vé)% + PeVp (Vs - Vz) . (19')
By use of
P2V2 = P3'3
and
Ps Pz

P2l 0Ty
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equation (19) ﬁé& be. solved for ﬁz - psv in terms of the known
quantities Dp,, py, V,, Tz, and L/D:

,Pz,.‘} p3 = 32‘-(3 '&/BZH; ac) (20)
where
B =Dy - epVp (.1_"2) "
it N\
2 FY (T _
C o= DoppVs | 7 (1 * 2‘)*(2 1)
and ; - . Lo o OVZ'F
| F =2 (0.049,_%,_3', )

.

The falue of."TS is‘obtainsd from equation.'(fs)_f.__-~

Nonlinear axial-velocity distributions. - When static-
pressure drops exceed 30 percent of the absolute pressure at
the tube entrance, an error of more than 10 percent will be
made in determining the pressure drop from equation (20). In
this case the simplified solution of the differential equation
for the pressure drop based on the linear axial-velocity dis-
tribution is no longer valid. A more precise solution of equa-
tion (17) may be derived as follows: First, the axial velocity
is expanded as a power series of the x/D ratio with coefficients
to be determined. This expression is substituted in equation (17)
and the equation is integrated for the pressure as a function
of the x/D ratio. By the use of thé series development for the
gtagnation temperature, the coefficients of the power series
are finally determined,

Expanding the axial velocity in terms of the X/D ratio gives

| 'i\ 2 (x\3 x4
V = Vg + a(-ﬁ) + b(ﬁ) + C(ﬁ) + d('ﬁ) o o e (21)
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which’ 18 sibetituted in equation-(17) rewritien as =

T | ®)

where m = 0,098R"0:2, There is thus obtained for the axial-
pressure distribution

= - ¢ (E) + ﬁ(ﬁ“’+'3(%)- + 9(5 . .
P =7, - ol Vz(n) *a5) T3 I\p,

ol s ]

If T 1is replaced by T3 end 6 1is'defined ag T, - Ty, there

ia obtained from equation (B8):

and jthe g&s;law Dol
6. may be written as

W RgeV o Bdey
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Linear equations for the coefficients in the power series
of equation (21) are obtained by substituting. the. expressions
for..V, p, and 6 given-by equations:(21), (22), and (23),
respectlvely, in equation - (24) and setting the sum of the coef -
ficlents of the vdrious powers of -the %. ratio eqaal to zero:

.. G‘ P /
& = Bmﬁza“¥ af(y + 1)  Om°
: v . o
2RG . :é ¥ RG Z.J
v 8?\ an(y+1)  Opmd B
BC = m | vy + o | e : '
RATE TE) TR TR
S R A ZyR. \°8 it
G G
86 = sm| 2V2¢  ac y + 1 be 4-62m
= g | e b - s ;
RG 5 4 VRG RG S5t y
, tha:re
B - TW, - 92 _ Vz
v :‘7RG

The coefficients a, b, ¢, d, and e are thus determined
in terms of T and the entrance conditions m, V,, and 6.

The pressure dron for any value of X/D is found by substituting
these values in equation (22) or in the following rearrangement
of equation (22):

oy 5
X ma + 2b mb + 3c\(X
Po =~ P = oV (mV? + a. 5' ) + <;—~Er"“;)(fa
' 4
N (mc : 4d> (}2;.) U (26)
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The rapidity of convergence of the right-hand side of equa-
tion (26) has been investigated by a graphiocal integration of
equation (17) for specific initial conditions. In flgure 1 the
results of this integration are compared with the results obtained
by use of equation (26). Mathematical accuracy compatible with
the other simplifying assumptions of this analysis is obtained:
for pressure ratios down to 0.55 by using five terms of the power
geries. ’

Figure 1 is also useful for checking the accuracy of equation (20),
which was derived by assuming a linear axial-velocity distribution.
Equation (20) appears to be reascnably accurate throughout the present
design range and down to a pressure ratic p3/p2 of 0,7.

Another approximate solution for equation (17), based on the
use of the stagnation temperature in the gas law, is

‘ RPNRN |
T ] A'I\‘ '/T 2 l‘l ) (pé_ —}
paf ¥ 32\ %3\ . Pe o \P2) (27)
. /kng (pV)?Ry (

log, =
e P3 T, - st T83 + T%g

W

where

- (35.)

\D
TS3 = TSZ 4 92 -l - 3
The accuracy of this solution, as indicated in figure 1 is between
.the accuraclies of the two solutions already discussed,

Effect of Mach number on flow in radlator tubes. - Important
information concerning the effect of Mach number on flow in radi-
ator tubes can be obtained from equation (17). From equation (23)

o - 9‘23*0.09812"0'«233 n

which, when differentiated, is

= -0,098 B — ax (28)

-q4%
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Substituting directly in equation (17) results in

_dp = (-pV)V %9- + oV Qv (29)

If dp 1is now eliminated from equation (29) by means of the
two relationships

and

the resulting equation in two variables is

SR
VE( . ZJG >+ Ry (9, - TW>
< AP - (30)

¥

jo7]

Equation (30) is important because it is 1ndependent of geometry
and Reynolds number,

At present no closed solution of equatlon {(30) is available.
A graphical solution,” determlned by the isoclinic method, 1s given
in figure 2. The curve for any particular radiator ils the curve
that passes through the point vzg,eé) corregponding to the

- given entrance conditions. ‘The straight line in the figure sep-
arates the supersonic range on the right from the subsonic range
on the left. The equation of the straight line is found by
setting d6/dV equal ‘to zero in equation (30)

(31)
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This equation may be easily reduced, from the definition of e,
to

<

= 1; that i1s, the line corresponds to & Mach number of unity.

If the entrance velocity V2 -is subsonic, V will increase
along the tube and may reach sonic velocity, where %% = 0,

For the air to acceléerate into the supersonic region, 6 would
have to increase; that i1s, the total energy would have to decrease,
which is contrary to equation (23), the heat-transfer equation. A
gupergonic velocity may then never develop within a radiator tube
with subsonic entrance velocity. . The limiting Mach number of unity
will be found at the tube exit.

If the entrance velocity is supersonic, V will decrease
along the tube, the change being now from right to left along the
curves of figure 2. The flow may not, however, pass continuously
into the subsonic region without wiclating equation (23). A
discontinuous transition may occur from the supersomic to the sub-
gonic region by means of a stationary compression shock if the
upstream flow is supersonic, depending on the tube length and the
exit pressure. Such phenomena, however, are of no importance in
current radiator technology and a discussion of them is beyond the
scope of this paper. S : '

Preagsure losénatutﬁeiéxiﬁﬁoff%he radiator tubes. - For radi-
atora in current use the discharge of the air from the radiator tubes
is accompanied by a loss of total pressure of about O.qu (ref -

erence 2, p. 10). - This: loss somewhat exceeds that given by the
well-known Borda-Carnot formula for expansion-loss =

N 32)
4 (

o Ay o . S L —
which, for i 5 ig only O.llqg., The. difference 18 probably

due partly to surfacevirregﬁlarities.atvthevexiﬁ:éndfpartly Lo
the difference in kinetic energies assoclated with the upstream
and the downstream velocity distributions,

Ouklet flow. - For corivenience in computation, the air behind
the radlator is assumed to. be brdyght'to sﬁagnation conditions,
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The stagnation pressure is then

P o=pg|1+ 2t 3 0.2, (33)
and, from equation (6), the stagnation temperature is

‘ 4(0.0247)3'0'29_
- Ts R D
2

TS4 = TSZ + (Tw (34)

—

The air is now assumed to expand isentropically to the free-
stream pressure, The velocity of the air at this pressure is
given by '

' e , T ’
- Y - - - - 5
Vs .—/\/ZJQP (‘TS4 Tb) = 1/ch10 Ts, (1 T;Z) (35)

Introducing the relationship v !

y-1

To, /P
8 IS .

- =<_‘?- | (36)
5 Po |

allbws equati&n (35) to be rewritten as

y-1

nnronias

V. =i/2dcgTg | 1 - (39._ 7 (37)
9 4 .\ Pg _
84 .

The drag pover pér unit open area due to the momentum change
of the cooling air is ' '
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- paVa(V, - V5)V,
D 550

53(38)

o IE is to be noted thdt th1s power represents, in general, a prac-
tical minimum as this value neglects any further effects of the
low-energy cooling air on. the external drag. .

. PERFORMANCE CHARTS

For, the radiator performance charts the pressure drops within
the radiator tubes were, for.convenience, calcnlated by the simplest
of the methods discussed, namély, the method -that assumes a linear
velocity distribution along the tube. As has already been indi-
ﬁgatpa,the pressure logses are thereby slightly overestimated for
those cases i which the pressure drop.is a large fraction of the
absolute pressure. The calculation of the flow path of the cool-

ing air to cbtain the performance charts 1s outlined as follows:

Valueg.of airplane apeed,'altitude, and tube-entrance velo-
city are assumed. The temperature - Ty . at the tube entrance
follows from equation (1); butztheApregsure'_pz given by equa-

tion (2) is arbitrarily reduced by 10 percent of the free-sireem
dynamic pressure to account for flow separation and gskin friction.
The heat-transfer rate follows from equation (14) by evaluating
the viscosity in the Reynolds number at the mean air temperature
approximated by use of equation (6). The pressure at the radiator
exlt follows from equation (20), where 'I‘3 is approximated by

equation (6). The stagnation pressure and the temperature in the
duct behind the radiator follow from equations (33) and (34),
respectively. TFinally, the drag power is obtained from equa-
tion (38) with the exit velocity of equation (37). The atmos-
pheric conditions were aseumed to be those of Army air and the
vadiator-tube-~wall temperature was assumed to be 2400 F. A
ratio of free-flow area to frontal arca of 2/3 vwas assumed;

for any other retio, the results merely change in proportion.

The caloulh#ionémoovpred'thé'fcllowing ranges of variables:

i v+« s e+« « 0 to 50,000
P 0 to 500
e e e s e . +9,12, and 15
L ... 1faand 1/5

~Altitude, £ . o 0 0 0 e e e
Alrepeed, MPHL . 4 b ec e e eene
Radiator-tube length, in. . .
Radiator-tube diameter, in. .

. . ® -
- -
e ®» & o
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The six performance charts of figure 3 are for the six
different radiators. .In these charts the total-pressure loss,
defined as the difference between the stagnation pressures
ahead of and behind the radiator, has been plotted agalnst
the heat-transfer yate per unit frontal area, Ths inlet pres-
sure losgs is not included. The ordinates have been divided by
6 for NACA standard air (see table I) merely. for convenience
in separating the curves. Lines of constant tube-entrance
velocity have also been plotted In figure 3 to ald in the quick
determination of . the cocling-alr quantity at the-radiator
face. . . . . -

Although the calculations were . carried out:for airplane
gpeeds of 100 miles per hour to 500 miles per hour, the results
plotted in figure 3 are only for an airplane speed of 300 miles
per hour. The ratio of the heat-transfer rate al several alir-
plane apeeds Lo the heat~transfer rate at an airplane speed of
300 miles per hour for the same total-pressure loss has been
tabulated for different altitudes in table II, These cor-
rections, although appreciable in some cases, especially at the
lower altitudes, are for the mosht part negligible. A similar
correction for the cooling-air quantity is given in table III,
where the ratios of the tube-entrance airspeeds at several
airplane speeds to the tube-entrance airspeed at an airplane
speed of 300 miles per hour for the same loss in total pres-
sure are tabulated for diiferent altitudes. :

It may be remarked that the corrections in table II involve
two opposing effects of alrplane speed: namely, increaged ‘tube-
entrance stagnation temnerature, which decreases the heatl-
transfer rate for a glven total pressure loss, and increased tube-
entrance density, which has the opposite effect. At low altitudes,
the temperature effect predominates; but at high altitudes, where
the critical design condition usuvally occurs, these effects
almost compensate each other and render figure 3 particularly
accurate. o

A comparison of figures 3(a) and 3(d) shows that about 50 per-
cent more heat may be dissipated per unit flow area by %rinch

tubes 9 inches long than by irinch tubes 9 inches long for the

same total-pregsure loss. In general, for tube lengths of this
order, the tubes of smaller diameter will permit smaller radi-
ators and/or smaller total-pressure losses.
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Figure 4 shows the drag characteristics of the radiators
as functions of the flight speed, the heat-tranefer rate, and
the tube-entrance velocity. The heat-transfer rate and the tube-
entrance velocity are obtained from figure 3. No interference
efTects or weight drag sre included. It may be seen that, at
the high inlet velocities necessary at high altitudes wath radi-
ators of reasonable size, the cooling drag power becomes very high.

In the past it was hoped that the Meredith phenomenon would
bring about very low drags at high altitudes., Appreciable decreases
in drag are due to this source; but the calculations, which auto-
matically take into account the Meredith phenomenon, show that
these decreases are not sufficient to keep the drag of small-gize
high-pressure -drop unlts from appreciably Increasing at high
altitudea.

An example will illustrate the use of figures 3 and 4 and of
table II. The alrplane for which the radiator will be designed 1s
assumed to have the performance shown in teble I. The densities
and Mach numbers usged 'in caloulating q, are for Army air. The

radiator de51gn ig agsumed to be ior tubes of irlnch internal

diameter and 9-inch length

The usual condition determining the radiator frontal area ’
will be either climb at sea level or climb at the maximum altitude,
that is, the condition at which the heat-transfer rate per unit
frontal area is lowest when the entire total pressure available
for cooling ig utilized. I the available pressure for cooling is
assumed to be 0. 9qp, the values of the heat-transfer rate may be

read from figure 3(a) for both high apeed and climb. The results,
corrected according to table II, are sumsarized in table IV.

An examination of table IV discloses that the frontal arsa of
the radiator is determined by the value of the heat-transfer rate
in climb at 40,000 feet, if the necessary heat-transfer rate for
satlsfactory cooling is assumed constant. If 1000 horsepower is
to be transferred to the cooling alr, the necessary radiator
frontal area is 1000/164 or 6 square feet.

Once the radiator frontal area 1s fixed; the operating line of
the radiator is the ordinate in figure 3 through a heat-transfer
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rate of 164 horsepower per square foot. The retio of the drag
power to the heat-transfer rate may be determined from figure 4(a)
from the values.of the airplene speed, the tube-entrance
velocity, and the altitude... The reaulbs BYe tabulated in table V

¥

‘CONCLUSIQNS

From the present study of heat transfer, pressure drop,
and drag power cof radiators in flight at high altitudes, it
is concluded that:

1. At high altitudes, the density reduction within the
radiator tubes results in appreciable increases in both
friction pressure drop and acceloration pressure drop.

2. The usual heat-transfer equations may be retained at
high Mach numbers, provided that stagnation temperature is used
in place of actural temperature, -

3. Heat-transfer rate as & functlon of pressure loss is
practically independent of airplane speed at high altitudes.

4, Excessive drag 1s associated with the use of small
radiators at high altitudes; slight increases in radiator size
result in large decreases in drag.

5. The Meredith phenomenon becomes insignificant when the
radiator pressure drop approaches the total available pres-
sure.

Langley Memorial Aeronautical Léboratory
National Advisory Committee for Aeronautics
Langley Field, Va.

REFERENCES

1. Silverstein, Abe: High-Altitude Cooling. I - Résume of the
Cooling Prohlem. NACA ARR No. L4I1l, 1944,

2. Brevoort, M, J., and Leifer, M.: Radiator Design and Tnstal-
lation., NACA ACR, May 1939.



22

HAGA ARR No.. DATITD o

3, Brevoort M, T Raéiator beslgn. NACA ACR, July 1941. %

4, Cfocco, Luigit

Transmission of Eeat from 8 Flat Plate ta a

Fluid Flowing at a High Velocity. NACA .M No, 690, 1932.

54 Frgssel, W.:

Flow in Smooth Straight Pipes at Velocities

above and below Sound Velocity. NACAIM No. 844, 1938.



L=773

NACA ARR No. L4I1l1lb 23

TABLE I. - ASSUMED ATRPLANE PERFORMANCE
[@1ng loading, 40 1b/sq ft; heat rejection, 1000 hp]

' : High speed ‘ Climb
Altitude g:ig‘%;eo _ Alr- | Free-stream 0.9q, Air- Free-stream | 0.9q
(ft) () I speed, V impact 5 speeds v fmpact 5 c
(mph) pressure, q, ] {mph pressure, q.
, (1v/8q ft) B (1b/aq ft)

0 . 1,000 333 275 247 192 87 . 78.3
10,000 .738 367 247 301 218 84 102.4
20,000 . 533 403 220 371 246 77 130.2
30,000 T W374 450 190 456 - 280 70 168.5
40,000 «245 501 170 625 354 79 290.0

8The values of ¢ are based on NACA standard alr as in fig. 3.

TABLE II. - RATIO OF HEAT~TRANSFER RATTS AT SEVERAL ATRPLANE SPEEDS

TO HEA-"I‘-TRANSFER RATE AT AN AIRPLANE SPEED OF 300 MILES PER
P

HOUR FOR IDENTICAL TOTAL-PRESSURE LOSSES, =——S—
- » (Pc) L
‘ : 300
Po/(Po) o
Altitude - R Lo
v, £t) 0 10,000 | 20,000 30,000 40,000 50, 000
(mph) ' - B '
100 1.08 1.05 1.03 1.02 1.00 1.00
200 1.05 1.03 1.02 1.01 1.00 1.00
300 1.00 1.00 1,00 1.00 1.00 1.00
400 .93 | .95 .97 .98 .99 1.00
500 .83 .88 .92 .95 .98 .99

TABLE IITI. - RATIO OF TUBE~-ENTRANCE AIRSPEEDS AT SLEVERAL AIRPLANE
SPEEDS TO TUBE-ENTRANCE AIRSPEED AT AN AIRPLANE SPEED
OF 300 MILES PER HOUR [FOR IDENTICAL TOTAL-

PRESSURE LOSSES, ?%§%4—~
2/300
_ Va/ (V2) 500
Altituds v '
Vo ~Uft) 0 10,000 20,000 30,000 40,000 50,000
(mph) :
100 1.05 1.05 1.05 1.06 1.06 1.06
200 1.03 1,03 1.03 1.03 1.04 1.04
300 1.00 1.00 1.00 1.00 1.00 1.00
400 .96 .96 .96 .95 .98 l95
8GO .92 .91 .91 .90 .89 .89

NATIONAL ADVISORY
COMMITTEE FOR AERQNAUTICS



COCLING PER SQUARE FOOT

TABLE IV. - VARTATION WITH ALTITUDE OF MAXIMUX POSSIBLE

High speed ClimbP
P
Albltude)  airspeed (Pe)z00 —— Fe atrspeed|  (Pelzog (_"f‘_' Fo
(£t) (from table I)|(from fig. 3(a)) (Pc)soo (hp / sq £t){ (mph) (hp./ sq ft) Pclgoo (np /sq ft)
(mph) (hp/ sq ft) (from table II) {from table II)

0 333 308 0.98 299 192 190 1.05 199
10,0C0 367 300 97 291 218 200 1.03 206
20,000 403 282 .97 274 246 193 1.01 195
20,000 4E0 235 Relrd 228 280 175 1.00 175
40,000 £01 195 .98 191 354 164 1.00 164

NATIONAL ADVISORY
COMMITTEE FOR AERONAUTICS
TARLE V, - FPERFORMANCE OF RADIATOR OF 6-SQUARE-FOOT FRONTAL
AREA TRANSFERRING 1000 HORSEPOWER
v High speed Climb
Altitude e v PD/P P v P
o) c D (] D
(ft) (fror? fig. 3(a)) (from table I) (from fig. 4(a)) - (hp) {mph) Pp/P, (hp)
{mph) (mph)

O 130 32 0.102 102 192 0.124 124
10,000 138 3E7 072 72 218 .108 108
20,000 145 403 .064 64 246 .102 102
30,000 172 4EC .104 104 280 .200 200
40,000 220 501 176 176 354 360 360
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